Search results for "Nanog Homeobox Protein"

showing 10 items of 14 documents

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct

NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells

2017

The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting pat…

0301 basic medicineHomeobox protein NANOGembryonic stem cell marker networkAdultMaleRex1regenerative medicineBiologyStem cell markerReal-Time Polymerase Chain ReactionCatalysisArticleSettore MED/13 - Endocrinologiaadipose derived stem cell (ASC); regenerative medicine; embryonic stem cell marker networkInorganic Chemistryadipose derived stem cell (ASC)03 medical and health sciencesSOX2HumansCD90Physical and Theoretical ChemistryMolecular BiologySpectroscopyEmbryonic Stem Cellsreproductive and urinary physiologySOXB1 Transcription FactorsOrganic ChemistryMesenchymal stem cellCell DifferentiationGeneral MedicineNanog Homeobox ProteinMiddle AgedEmbryonic stem cellMolecular biologyAdipose derived stemcell (ASC); stem cell markers Regenerative medicineComputer Science ApplicationsCell biologySettore MED/18 - Chirurgia Generale030104 developmental biologystem cell markers Regenerative medicineAdipose Tissueembryonic structuresFemaleStem cellbiological phenomena cell phenomena and immunityOctamer Transcription Factor-3Adipose derived stemcell (ASC)International Journal of Molecular Sciences; Volume 18; Issue 6; Pages: 1107
researchProduct

Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation

2017

MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR- 29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b…

0301 basic medicineOncologycancer stem cellsCarcinogenesisCell Cycle ProteinsTriple Negative Breast NeoplasmsMicroRNA 29b0302 clinical medicineCell MovementSettore BIO/10 - BiochimicaCancer stem cells; MiR-29b-1; SPIN1; Triple-negative breast cancer; Wnt/β-catenin and Akt signaling pathwaysMedicineBreastBreast -- CancerTriple-negative breast cancerWnt signaling pathwayMicroRNANanog Homeobox ProteinGene Expression Regulation NeoplasticOncologyWnt/β-catenin and Akt signaling pathway030220 oncology & carcinogenesisMiR-29b-1Wnt/β-catenin and Akt signaling pathwaysNeoplastic Stem Cellstriple-negative breast cancerFemaleMicrotubule-Associated ProteinsSignal TransductionResearch Papermedicine.medical_specialtycancer stem cellPaclitaxelDown-Regulation03 medical and health sciencesBreast cancerSOX2Cancer stem cellInternal medicineCell Line TumormicroRNAHumansNeoplasm InvasivenessCell ProliferationSPIN1business.industrySOXB1 Transcription Factorsmedicine.diseasePhosphoproteinsMolecular medicineAntineoplastic Agents PhytogenicMicroRNAs030104 developmental biologyDrug Resistance NeoplasmbusinessOctamer Transcription Factor-3
researchProduct

Knockdown of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells

2019

The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded…

AdultHomeobox protein NANOGDown-RegulationBiologyArticleCatalysisSettore MED/13 - Endocrinologialcsh:ChemistryInorganic ChemistrySOX2human adipose stem cellHumansCell Self RenewalPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyCells CulturedSpectroscopyCell Proliferationmolecular_biologyCell growthOrganic ChemistryMesenchymal stem cellDNMT1lentiviral transductionCell DifferentiationMesenchymal Stem CellsNanog Homeobox ProteinGeneral MedicineMiddle AgedCell cycleG1 Phase Cell Cycle CheckpointsComputer Science ApplicationsCell biologySettore MED/18 - Chirurgia GeneraleNANOGlcsh:Biology (General)lcsh:QD1-999Gene Knockdown Techniquesembryonic structures<i>NANOG</i>Female<i>DNMT1</i>CDKN1Bbiological phenomena cell phenomena and immunityStem cellcell cycle regulationAdult stem cell
researchProduct

Erratum to: Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells

2016

In regenerative medicine the maintenance of stem cell properties is of crucial importance. Ageing is considered a cause of reduced stemness capability. The limbus is a stem niche of easy access and harbors two stem cell populations: epithelial stem cells and fibroblast-like stem cells. Our aim was to investigate whether donor age and/or long-term culture have any influence on stem cell marker expression and the profiles in the fibroblast-like stem cell population.Fibroblast-like stem cells were isolated and digested from 25 limbus samples of normal human corneo-scleral rings and long-term cultures were obtained. SSEA4 expression and sphere-forming capability were evaluated; cytofluorimetric…

AdultMale0301 basic medicineStage-Specific Embryonic AntigensPrimary Cell CultureGene ExpressionMedicine (miscellaneous)Limbus CorneaeBiologyBiochemistry Genetics and Molecular Biology (miscellaneous)Donor age03 medical and health sciencesCell MovementSpheroids CellularmedicineATP Binding Cassette Transporter Subfamily G Member 2HumansFibroblastAgedCell ProliferationStem CellsAge FactorsEpithelium CornealCell DifferentiationEpithelial CellsHLA-DR AntigensNanog Homeobox ProteinCell BiologyFibroblastsMiddle AgedMolecular medicinehumanitiesNeoplasm ProteinsCell biology030104 developmental biologymedicine.anatomical_structureLeukocyte Common AntigensMolecular MedicineFemaleErratumStem cellOctamer Transcription Factor-3BiomarkersStem Cell Research & Therapy
researchProduct

Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells

2020

A wide range of clinical applications in regenerative medicine were opened decades ago with the discovery of adult stem cells. Highly promising adult stem cells are mesenchymal stem/stromal cells derived from adipose tissue (ADSCs), primarily because of their abundance and accessibility. These cells have multipotent properties and have been used extensively to carry out autologous transplants. However, the biology of these cells is not entirely understood. Among other factors, the regeneration capacity of these cells will depend on both their capacity of proliferation/differentiation and the robustness of the biochemical pathways that allow them to survive under adverse conditions like thos…

AdultMaleHomeobox protein NANOGAgingTime FactorsStromal cellArticle SubjectApoptosisBiologyRegenerative MedicineBiochemistryRegenerative medicineCell therapyAMP-Activated Protein Kinase KinasesPeptide Elongation Factor 2Sirtuin 1SOX2AnimalsHumansRats WistarLipoperoxidation.Cell ProliferationQH573-671SOXB1 Transcription FactorsStem CellsMesenchymal stem cellAge FactorsCell DifferentiationMesenchymal Stem CellsNanog Homeobox ProteinCell BiologyGeneral MedicineMiddle AgedRatsCell biologyOxidative StressAdipose TissueageFemaleLipid PeroxidationStem cellCytologyProtein KinasesResearch ArticleHeLa CellsAdult stem cell
researchProduct

In-situ gelling xyloglucan formulations as 3D artificial niche for adipose stem cell spheroids.

2020

Abstract Three-dimensional spheroidal cell aggregates of adipose stem cells (SASCs) are a distinct upstream population of stem cells present in adipose tissue, with enhanced regeneration properties in vivo. The preservation of the 3D structure of the cells, from extraction to administration, can be a promising strategy to ensure optimal conditions for cell viability and maintenance of stemness potential. With this aim, an artificial niche was created by incorporating the spheroids into an injectable, in-situ gelling solution of partially degalactosylated xyloglucan (dXG) and an ad hoc formulated culture medium for the preservation of stem cell spheroid features. The evolution of the mechani…

Cell SurvivalPopulationCellCell Culture TechniquesAdipose tissue02 engineering and technology[object Object]Biochemistry03 medical and health scienceschemistry.chemical_compoundStructural BiologySpheroids CellularmedicineHumansViability assayeducationMolecular BiologyGlucansCells Cultured030304 developmental biology0303 health scienceseducation.field_of_studyMicroscopyTissue EngineeringViscosityRegeneration (biology)SOXB1 Transcription FactorsSpheroids of adipose stem cells Artificial niche In-situ forming gel Partially degalactosylated xyloglucanSpheroidHydrogelsMesenchymal Stem CellsGeneral MedicineNanog Homeobox Protein021001 nanoscience & nanotechnologyCell biologyCulture MediaXyloglucanmedicine.anatomical_structurechemistryMicroscopy Electron ScanningXylansSettore CHIM/07 - Fondamenti Chimici Delle TecnologieStem cell0210 nano-technologyRheologyShear StrengthOctamer Transcription Factor-3International journal of biological macromolecules
researchProduct

Gene expression of stem cells at different stages of ontological human development.

2013

Abstract Objectives To compare multipotent mesenchymal stem cells (MSCs) obtained from chorionic villi (CV), amniotic fluid (AF) and placenta, with regard to their phenotype and gene expression, in order to understand if MSCs derived from different extra-embryonic tissues, at different stages of human ontological development, present distinct stemness characteristics. Study design MSCs obtained from 30 samples of CV, 30 of AF and 10 placentas (obtained from elective caesarean sections) were compared. MSCs at second confluence cultures were characterized by immunophenotypic analysis with flow cytometry using FACS CANTO II. The expression of the genes Oct-4 (Octamer-binding transcription fact…

Homeobox protein NANOGAdultPAX6 Transcription FactorKruppel-Like Transcription FactorsBiologyFetal DevelopmentYoung AdultMesenchymal stem cells; Extra-embryonic tissues; Gene expressionPregnancyGene expressionHumansPaired Box Transcription FactorsCD90Eye ProteinsMesenchymal stem cellHomeodomain ProteinsExtra-embryonic tissueSOXB1 Transcription FactorsMesenchymal stem cellObstetrics and GynecologyGene Expression Regulation DevelopmentalMesenchymal Stem CellsNanog Homeobox ProteinMiddle AgedAmniotic FluidMolecular biologyRepressor ProteinsHaematopoiesisSettore MED/18 - Chirurgia GeneraleReal-time polymerase chain reactionReproductive Medicineembryonic structuresFemaleRNA extractionGene expressionStem cellChorionic VilliOctamer Transcription Factor-3European journal of obstetrics, gynecology, and reproductive biology
researchProduct

Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells

2013

AbstractPluripotency is maintained by both known and unknown transcriptional regulatory networks. In the present study, we have identified Zfp819, a KRAB-zinc finger protein, as a novel pluripotency-related factor and characterized its role in pluripotent stem cells. We show that Zfp819 is expressed highly in various types of pluripotent stem cells but not in their differentiated counterparts. We identified the presence of non-canonical nuclear localization signals in particular zinc finger motifs and identified them as responsible for the nuclear localization of Zfp819. Analysis of the Zfp819 promoter region revealed the presence of a transcriptionally active chromatin signature. Moreover,…

Homeobox protein NANOGMolecular Sequence DataEndogenous retrovirusBiologyTripartite Motif-Containing Protein 28Cell LineHistones03 medical and health sciencesMice0302 clinical medicineSOX2AnimalsAmino Acid SequenceRNA Small InterferingInduced pluripotent stem cellPromoter Regions GeneticEmbryonic Stem Cells030304 developmental biologyTranscriptionally active chromatinZinc fingerMedicine(all)Cell NucleusHomeodomain Proteins0303 health sciencesSOXB1 Transcription FactorsNuclear ProteinsCell DifferentiationGeneral MedicineCell BiologyNanog Homeobox ProteinMolecular biologyEmbryonic stem cellUp-RegulationDNA-Binding ProteinsRepressor Proteins030220 oncology & carcinogenesisCarrier ProteinsOctamer Transcription Factor-3Nuclear localization sequenceDevelopmental BiologyDNA DamageProtein BindingStem Cell Research
researchProduct

Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells

2010

We previously reported the generation of multipotent adult germline stem cells (maGSCs) from spermatogonial stem cells (SSCs) isolated from adult mouse testis. In a later study, we substantiated the pluripotency of maGSCs by demonstrating their close similarity to pluripotent male embryonic stem cells (ESCs) at the epigenetic level of global and gene-specific DNA methylation. Here, we extended the comparative epigenetic analysis of maGSCs and male ESCs by investigating the second main epigenetic modification in mammals, i.e. global and gene-specific modifications of histones (H3K4 trimethylation, H3K9 acetylation, H3K9 trimethylation and H3K27 trimethylation). Using immunofluorescence stain…

MaleHomeobox protein NANOGChromatin ImmunoprecipitationEmbryologyAdult Germline Stem CellsBlotting WesternFluorescent Antibody TechniqueBiologyMethylationPolymerase Chain ReactionCell LineEpigenesis GeneticHistonesMice03 medical and health sciences0302 clinical medicineSOX2GeneticsAnimalsEpigenetics10. No inequalityMolecular Biology030304 developmental biologyHomeodomain Proteins0303 health sciencesGenomeMultipotent Stem CellsSOXB1 Transcription FactorsObstetrics and GynecologyAcetylationNanog Homeobox ProteinCell BiologyFlow CytometryMolecular biologySpermatogoniaChromatinReproductive Medicineembryonic structuresH3K4me3Octamer Transcription Factor-3Chromatin immunoprecipitation030217 neurology & neurosurgeryDevelopmental BiologyBivalent chromatinMolecular Human Reproduction
researchProduct